From Basic To Advanced EFB Design – Function and Limits of Carbon

FENIBAT 2022

Rainer Bußar, Delphine Baumann, Ian Klein, Hamid Ramianpour

and Micha Kirchgeßner

PENOX GmbH, Germany

Version 3 – 12.04.2022

- 1. Function and Basic Design of EFB Batteries
- 2. Basic "Design Rules"
- 3. Improving the Negative Active Mass (NAM)
- 4. Improving the Positive Active Mass (PAM)
- 5. Summary

6. Outlook and Innovations by PENOX

PENOX Function and Design of EFB Batteries

- EFB Batteries = Enhanced Flooded Batteries
- Introduced first by European Manufactures* as an alternative for AGM Technology**
- Their key-performance parameters are in-between advanced SLI batteries and AGM Batteries reaching close to AGM performance for Advanced EFB

EFB Batteries are designed for:

- High (50% DoD) cycle life
- High (dynamic) charge acceptance
- Operate in "Start-Stop" Applications
- To be more robust as compared to AGM Batteries

(reg. are 50% DoD, and 17.5% DoD in pSoc) (CA, DCA)

EFB technology is presently moving into their *third* design generation called "*EFB+C*"

* EXIDE Technologies was among the first companies developing this technology as "Advanced Flooded" Technology **AGM Technology was initially developed as a new type of VRLA battery by Hoppecke in Germany in the 1990th

Generations of EFB Batteries

Generation "0" (G0)

- 50 cycles @50% DoD
- pSoC cycling possible
- Initial testing at 20%
 DoD in pSoC
- Basic Design, gravity casted grids, no compression

EFB Gen.1

- > 100 cycles @50% DoD
- 17.5% DoD: >6 units
- CA: >1/Ah
- DCA: no req.
- Basic Design, improved plate designed, improved separators, slight compression

EFB Gen.2

- > 100 cycles @50% DoD
 - 17.5% DoD: >9 units
- DCA: >0.3 A/Ah
- Improved NAM to PAM Ratio
- Use of Carbon in NAM

EFB-Gen.3 / "EFB+ C"

- > 150 cycles @50% DoD
- 17.5% DoD: >12 units; target: >15 units (VW >18 units)
- DCA: >0.4 A/Ah target: >1 A/Ah
- Thin grids with high mass utilization
- Use of Functional Carbon

Source of modified image: https://www.iconspng.com/image/121184/car-battery

"Basics" Design Features

• Modern battery designs tend to have a capacity limitation by the PAM

PENOX

- Space limitations in the battery box shift designs often close to a limitation by the electrolyte (discharge below a density of 1.15 g/cm³ is critical)
- Density of the electrolyte should not be increased above 1.28 g/cm²
- In high temperature applications the electrolyte density is often reduced to about 1.26 g/cm³
- NAM surface is critical for charge acceptance, and designs are mostly based on terminal negative plates (one more negative plate)
- Effective NAM structure requires a min. porosity of 40 % and a min. surface area of 1 m²/g
- PAM porosity (>45%) is supporting mass utilisation. However, for a high cycle life a min. amount of PAM weight is needed.
- The battery requires a balanced design in terms of electrolyte, PAM to NAM weight ratio and relative geometric and electrochemical active surface area...

"Basics"

Cold-Cranking is supported by:

- High surface area of the electrodes (> 1 m²/g in PAM and >5 m²/g in PAM) to reduce at a given Ampere rate the specific current density
- Higher acid density will increase the discharge performance, but limits the re-charge
- NAM structure tends to be the parameter critical for performance (as surface is more limited)

Dynamic Charge Acceptance (DCA) is supported by:

- High surface area of the electrodes is supportive (>1.5; better >2 m²/g in NAM)
- NAM structure is critical for performance advanced expander mixes supporting an enhanced surface
- Carbon additives are supportive (loadings of functional carbon between 0.3 w% up to 1.0 w%)

Charge Acceptance (CA) is supported by:

- NAM to PAM ratio is critical (typical 1 : 1.1 up to 1.3)
- NAM structure is critical advanced expander mixes supporting an enhanced interface with the electrolyte are supportive (both surface and bulk-volume interface)
- Easiest improved by having a higher number of thinner plates (geometric advantage of surface area)
- Functional Carbon additives are supportive, but less as compared to DCA

PENOX Basic Design for EFB Batteries

PENOX GmbH	
R+D Department	Requisitos techicos da EFB
	24.02.2022 - V2.0

Requisitos básicos para

o projeto de um

Bateria EFB

PENOX GmbH Departamento de I+D Alemanha

PENOX is supporting customer development activities – Manuscript available on "Basic EFB Design"

PENOX Improving Negative Active Mass (NAM)

NAM is benefitting from:

- Expander mixes supporting a higher and stable active electrolyte surface
- Expander mixes supporting a higher porosity with larger average pore structure
- Functional carbon addition adjusted to the type and amount of lignosulfonate*

PENOX (new) directions are:

- Introducing optimized porosity in cured NAM, stabilized by a tetrabasic (4BS) negative curing
- PENOX is testing the impact on charge acceptance and dynamic charge acceptance
- Synergy with functional carbon is investigated a high carbon loading is not linearly related to a DCA
 performance carbon results in issues with water consumption, carbon loss by cycling and is very costly
 (up to 20k€/t)

(*Borregaard, ABC 2020)

PENOX Improving Pore Structure of NAM

PENOX directions are:

Using a "classical" tri-basic curing (3BS curing)

- Using lignosulfonate mixes improving pore structure
- Part of the research started in the AddESun-project (funded by the German ministry of economy)

Using a tetra-basic curing (4BS curing)

Using special PENOX expander mix and TBLS+[®] to realize a tetrabasic NAM structure

PENOX Studies on NAM Structure (3BS vs. 4BS)

Extract from Testing Series of PENOX									
Parameters			Trial 3		Trial 4		Trial 5		Trial 6
Expander Mix and Carbon Type	Surface Area m²/g	Surface Area eff. m²/g	3BS	4BS	3BS	4BS	3BS	4BS	3BS
Carbon A (0.7%) powder & Lignosulfonate A	165	115	3BS	4BS					
Carbon B (0.7%) dispersion & Lignosulfonate A Carbon C (0.14%) dispersion & Lignosulfonate A Carbon B (0.7%) dispersion									
& Lignosulfonate DCA									
Confidential Information - property of Penox GmbH	00292492) — —	—— 5 µm	Chem	iLytics 002	290845	5	5 μm	ChemiLytics

PENOX Studies on NAM Structure (3BS vs. 4BS)

Reference	Tria	al 3	Trial 4	Trial 5	
3BS	3BS	4BS	4BS	4BS	
0.10	0.10	0.13	0.13	0.13	
2.46	2.37	1.12	0.99	0.65	
0.21	0.21	0.78	1.08	1.17	
0.16	0.17	0.38	0.27	0.85	
42.4	43.4	50.6	49.2	49.9	
0.310	0.330	0.415	0.380	0.505	
2.4	2.4	1.4	1.44	1.12	

- All plates with 4BS curing have a higher porosity and higher median pore diameter
- BET surface area is lower for 4BS cured negative plates.... ...will it be relevant?

PENOX Dynamic Charge Acceptance (DCA)

Expander Mix and Carbon Type	Surface Area m²/g	Surface Area eff. m²/g	Ce (Ah)	Ce/Cn	Ic (A)	Id (A)	ld/lc	lr (A)	l DCA (A/Ah)
Carbon A (0.7%) powder & Lignosulfonate A	165	115	12.71	1.16	3.02	12.27	4.07	11.65	0.44
Carbon B (0.7%) dispersion & Lignosulfonate A	107	75	12.11	1.10	3.73	11.96	3.24	10.66	0.45
Carbon C (0.14%) dispersion & Lignosulfonate A	1485	208	12.14	1.10	4.08	11.83	2.91	11.05	0.47
Carbon B (0.7%) dispersion & Lignosulfonate DCA	107	75				running			

- Target of the market: >1 A/Ah for an EFB battery (Gen 3+)
- Carbon alone will not be able to realize it
- We found higher I DCA values with a 4BS structure as compared to 3BS structure
- Low loading with high surface are carbon results in acceptable I DCA values
- Higher loading with high surface-area carbons are expensive and not supporting I DCA as expected

Summary - NAM

- Charge acceptance is crucial for 17.5% DoD cycle life
- Carbon additives in NAM are <u>one</u> approach to improve DCA
- BET Surface is not the only relevant parameter => Porosity and pore structure matter as well!
- PENOX aims to realize an synergetic structure based on functional carbon and 4BS curing
- TBLS+[®] is a potential alternative and synergetic additive for 4BS curing of NAM
 - Increase of the porosity to >45% (as 40% in standard)
 - 3 to 4 times larger pore diameter as compared to the 3BS reference
- Electrodes with PENOX TBLS+[®] in NAM showed:
 - Higher DCA in comparison with reference plates (typical 0.1 up to 0.3 A/Ah)
 - o Higher porosity is also an electrolyte reservoir and thus allows better mass utilisation
 - Higher cycle durability in the 17.5% DoD Test (Ian Klein, ELBC 2020)

PENOX Improving Positive Active Mass (PAM)

PAM is benefitting from:

- Optimized mix of leady oxides with a specific distribution of particle sizes very fine oxides (such as mill oxides) tend to reduce cycle life
- Addition of red lead is supporting the formation efficiency
- Tetrabasic curing (4BS curing) using TBLS+[®] to optimize the pore structure and thus the mass utilization

PENOX (new) directions are:

- Adjusting crystal size with tetrabasic seeding additives
- Advanced leady oxides for 4BS curing and improved AM structure
- Introducing new bi-functional oxides such as PENOX RL+

PENOX Effect of TBLS+® on the Cured PAM

- Reference: 3BS
- Test series with 1 to 3%
 TBLS+[®] addition: 4BS

 Pore diameter and porosity are studied as a function of TBLS+[®]

PENOX Porosity - Effect of TBLS+® on the Cured PAM

→ Cured electrodes with TBLS+[®] had 15 – 20% higher porosity than reference electrode

PENOX Porosity - Effect of TBLS+® on the Formed PAM

→ Formed electrodes with TBLS+[®] had min. 14% up to 30% higher porosity than reference electrode

PENOX Seeding Model – to understand the Effect of TBLS+®

- Simple model to allow to estimate the optimal TBLS+[®] dosing in PAM
- Example provided is based on a Acid-to-oxide ratio of **7** litres sulphuric acid per 100 kg of dry lead oxide

Assumptions:

- homogeneous distribution of the seed tetrabasic crystals (d50 0.5 to 0.7 μ m)
- homogeneous growth of the seeds during crystallization phase of curing
- The crystal growth aspect ratio locked in x:y:z direction: **1.00: 0.70: 5.00**

PENOX Average 4BS Crystal Size based on simple Model

PENOX Comparison of Average 4BS Crystal Size

Comparison based on the Model, SEM, and the Laser Diffractometry (µm)

PENOX Structural Impact of TBLS+®

- Without TBLS+* and in a 3BS structure the pore diameter is below 1 μm
- TBLS+[®] shows a significant effect on the porosity of electrodes
- With TBLS+[®] the crystal size can be systematically controlled (=model)
- There is, depending on the paste recipe, an optimal dosing of TBLS+[®]
- Optimized electrodes with TBLS+[®] have larger pore diameters: about 4 times
- Larger pore size results in a higher water porosity of about **20%**
- 4BS crystals for high dosing of TBLS+[®] (>2%) grow together that can result in a structure more similar to lower dosing!
- Impact of structural properties on electrical performance was studied

PENOX Impact on Capacity – Peukert Test

Consists of two parts:

- First run: C20, C5, C10, and C1
- Second run: C5, C20, C1, and C10 (see next slide)

Cn – rated capacity – means measured capacity after n hours of discharge.

Purpose: Check the electrode stability and the accuracy of the capacity value

Peukert Test – Second Run

- Electrodes with TBLS+[®] showed **10%** larger discharge capacity
- Electrodes with 1.0% and 1.5% TBLS+[®] have nearly the same
 capacity in the two runs

Summary - PAM

- TBLS+[®] in PAM as additive has a significant effect on the structure of electrodes:
 - Increase of the porosity by up to 20%
 - $\,\circ\,\,$ 4 times larger pore diameter as compared to the reference
- Electrodes with TBLS+[®] showed :

PENOX

- Higher formation efficiency
- Higher and more stable capacity
- Higher cycle durability in the 100% DoD Test (fast aging test)

PENOX Perspective for Battery Additives in EFB

NAM:

- PENOX is offering new EFB expanders to improve the NAM structure
- 4BS curing of NAM is possible using PENOX designed expanders
- 4BS curing is an alternative or supportive concept to improve NAM and safe costs of expensive functional carbons

PAM:

- 4BS curing is an effective concept to improve PAM in EFB batteries
- PENOX is offering new advanced oxides combining the advantage of Red Lead and TBLS+[®]

=> our new PENOX RL+

Innovation by PENOX

TBLS+

pb3⁰⁴

A New Innovation for the PAM combining Red Lead and TBLS+®

iza.

Kindly visit our Booth 104

R&D Center in Thuringia, Germany

Thank you for your kind interest!