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• EFB Batteries = Enhanced Flooded Batteries

• Introduced first by European Manufactures* as an alternative for AGM Technology**

• Their key-performance parameters are in-between advanced SLI batteries and AGM Batteries –
reaching close to AGM performance for Advanced EFB

EFB Batteries are designed for:

• High (50% DoD) cycle life (reg. are 50% DoD, and 17.5% DoD in pSoc)

• High (dynamic) charge acceptance (CA, DCA)

• Operate in “Start-Stop” Applications

• To be more robust as compared to AGM Batteries

EFB technology is presently moving into their third design generation called “EFB+C”
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Function and Design of EFB Batteries

*   EXIDE Technologies was among the first companies developing this technology as “Advanced Flooded” Technology
**AGM Technology was initially developed as a new type of VRLA battery  by Hoppecke in Germany in the 1990th
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Generations of EFB Batteries

Source of modified image: https://www.iconspng.com/image/121184/car-battery

Generation „0“ (G0)
• 50 cycles @50% DoD
• pSoC cycling possible
• Initial testing at 20% 

DoD in pSoC
• Basic Design, gravity 

casted grids, no 
compression

EFB-Gen.3 / „EFB+ C“
• > 150 cycles @50% DoD
• 17.5% DoD: >12 units;

target: >15 units (VW >18 units)
• DCA: >0.4 A/Ah target: >1 A/Ah

• Thin grids with high mass 
utilization

• Use of Functional Carbon

„Basic“ EFB

„Advanced“ EFB

Future Designs

EFB Gen.1
• > 100 cycles @50% DoD
• 17.5% DoD: >6 units
• CA: >1/Ah
• DCA: no req.
• Basic Design, improved 

plate designed, 
improved separators, 
slight compression

EFB Gen.2
• > 100 cycles @50% DoD
• 17.5% DoD: >9 units
• DCA: >0.3 A/Ah

• Improved NAM to PAM 
Ratio

• Use of Carbon in NAM



“Basics” Design Features

• Modern battery designs tend to have a capacity limitation by the PAM

• Space limitations in the battery box shift designs often close to a limitation by the electrolyte 
(discharge below a density of 1.15 g/cm³ is critical)

• Density of the electrolyte should not be increased above 1.28 g/cm² 

• In high temperature applications the electrolyte density is often reduced to about 1.26 g/cm³

• NAM surface is critical for charge acceptance, and designs are mostly based on terminal negative 
plates (one more negative plate)

• Effective NAM structure requires a min. porosity of 40 % and a min. surface area of 1 m²/g

• PAM porosity (>45%) is supporting mass utilisation. However, for a high cycle life a min. amount of 
PAM weight is needed. 

• The battery requires a balanced design in terms of electrolyte, PAM to NAM weight ratio and relative 
geometric and electrochemical active surface area…
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“Basics”

Cold-Cranking is supported by:

– High surface area of the electrodes (> 1 m²/g in PAM and >5 m²/g in PAM) to reduce at a given Ampere rate 
the specific current density 

– Higher acid density will increase the discharge performance, but limits the re-charge

– NAM structure tends to be the parameter critical for performance (as surface is more limited)
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Dynamic Charge Acceptance (DCA) is supported by: 

– High surface area of the electrodes is supportive (>1.5; better >2 m²/g in NAM)

– NAM structure is critical for performance – advanced expander mixes supporting an enhanced surface 

– Carbon additives are supportive – (loadings of functional carbon between 0.3 w% up to 1.0 w%)

Charge Acceptance (CA) is supported by:

– NAM to PAM ratio is critical  (typical 1 : 1.1 up to 1.3)

– NAM structure is critical  – advanced expander mixes supporting an enhanced interface with the electrolyte 
are supportive (both surface and bulk-volume interface)

– Easiest  improved by having a higher number of thinner plates (geometric advantage of surface area)

– Functional Carbon additives are supportive, but less as compared to DCA 
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Basic Design for EFB Batteries

PENOX is supporting customer development activities – Manuscript available on „Basic EFB Design“ 



NAM is benefitting from:
• Expander mixes supporting a higher and stable active electrolyte surface 
• Expander mixes supporting a higher porosity with larger average pore structure
• Functional carbon addition adjusted to the type and amount of lignosulfonate*

PENOX (new) directions are:
• Introducing optimized porosity in cured NAM, stabilized by a tetrabasic (4BS) negative curing
• PENOX  is testing the impact on charge acceptance and dynamic charge acceptance
• Synergy with functional carbon is investigated – a high carbon loading is not linearly related to a DCA 

performance – carbon results in issues with water consumption, carbon loss by cycling and is very costly 
(up to 20k€/t)

(*Borregaard, ABC 2020)
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Improving Negative Active Mass (NAM)
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Improving Pore Structure of NAM

PENOX directions are:

Using a “classical” tri-basic curing (3BS curing)

• Using lignosulfonate mixes improving pore structure

• Part of the research started in the AddESun-project (funded by the German ministry of economy)

Using a tetra-basic curing (4BS curing)

• Using special PENOX expander mix and TBLS+® to realize a tetrabasic NAM structure 



Confidential Information - property of Penox GmbH

Extract from Testing Series of PENOX

Parameters Trial 3 Trial 4 Trial 5 Trial 6

Expander Mix and 
Carbon Type

Surface 
Area
m²/g

Surface 
Area eff.

m²/g 3BS 4BS 3BS 4BS 3BS 4BS 3BS
Carbon A (0.7%) powder 

& Lignosulfonate A
165 115 3BS 4BS

Carbon B (0.7%) dispersion 
& Lignosulfonate A

107 75 3BS 4BS

Carbon C (0.14%) dispersion 
& Lignosulfonate A

1485 208 3BS 4BS

Carbon B (0.7%) dispersion 
& Lignosulfonate DCA

107 75 3BS

Studies on NAM Structure (3BS vs. 4BS)

10



Reference Trial 3 Trial 4 Trial 5

3BS 3BS 4BS 4BS 4BS

Total Intrusion Volume ml/g 0.10 0.10 0.13 0.13 0.13

Total Pore Area m²/g 2.46 2.37 1.12 0.99 0.65

Median Pore Diameter (Volume) µm 0.21 0.21 0.78 1.08 1.17

Median Pore Diameter (Area) µm 0.16 0.17 0.38 0.27 0.85

Porosity Mercury % 42.4 43.4 50.6 49.2 49.9

Log. Differential Intrusion ml/g 0.310 0.330 0.415 0.380 0.505

BET m²/g 2.4 2.4 1.4 1.44 1.12

Confidential Information - property of Penox GmbH

Studies on NAM Structure (3BS vs. 4BS)

• All plates with 4BS curing have a higher porosity 
and higher median pore diameter

• BET surface area is lower for 4BS cured negative plates….
…will it be relevant?
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Confidential Information - property of Penox GmbH

• Target of the market:  >1 A/Ah for an EFB battery (Gen 3+) 
• Carbon alone will not be able to realize it

• We found higher I DCA values with a 4BS structure as compared to 3BS structure
• Low loading with high surface are carbon results in acceptable I DCA values
• Higher loading with high surface-area carbons are expensive and not supporting I DCA as expected

Dynamic Charge Acceptance (DCA)

Expander Mix and 
Carbon Type

Surface 
Area
m²/g

Surface 
Area eff.

m²/g

Ce 
(Ah)

Ce/Cn Ic (A) Id (A) Id/Ic Ir (A)
I DCA 
(A/Ah)

Carbon A (0.7%) powder 
& Lignosulfonate A

165 115 12.71 1.16 3.02 12.27 4.07 11.65 0.44

Carbon B (0.7%) dispersion 
& Lignosulfonate A

107 75 12.11 1.10 3.73 11.96 3.24 10.66 0.45

Carbon C (0.14%) dispersion 
& Lignosulfonate A

1485 208 12.14 1.10 4.08 11.83 2.91 11.05 0.47

Carbon B (0.7%) dispersion 
& Lignosulfonate DCA

107 75 running
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Summary - NAM
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• Charge acceptance is crucial for 17.5% DoD cycle life 

• Carbon additives in NAM are one approach to improve DCA

• BET Surface is not the only relevant parameter => Porosity and pore structure matter as well!

• PENOX aims to realize an synergetic structure based on functional carbon and 4BS curing

• TBLS+® is a potential alternative and synergetic additive for 4BS curing of NAM 

o Increase of the porosity to >45% (as 40% in standard)

o 3 to 4 times larger pore diameter as compared to the 3BS reference

• Electrodes with PENOX TBLS+® in NAM showed:

o Higher DCA in comparison with reference plates (typical 0.1 up to 0.3 A/Ah)

o Higher porosity is also an electrolyte reservoir and thus allows better mass utilisation

o Higher cycle durability in the 17.5% DoD Test (Ian Klein, ELBC 2020)
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Improving Positive Active Mass (PAM)

PAM is benefitting from:

• Optimized mix of leady oxides with a specific distribution of particle sizes – very fine oxides (such as 
mill oxides) tend to reduce cycle life

• Addition of red lead is supporting the formation efficiency 

• Tetrabasic curing (4BS curing) using TBLS+® to optimize the pore structure and thus the mass 
utilization

PENOX (new) directions are:

• Adjusting crystal size with tetrabasic seeding additives

• Advanced leady oxides for 4BS curing and improved AM structure

• Introducing new bi-functional oxides such as PENOX RL+
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1.0% TBLS+ 
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2.5% TBLS+ 

3.0% TBLS+

Reference - 0% TBLS+ 

• Reference: 3BS

• Test series with 1 to 3% 

TBLS+® addition: 4BS 

• Pore diameter and porosity 

are studied as a function of 

TBLS+®

Effect of TBLS+® on the Cured PAM
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→Cured electrodes with TBLS+® had 15 – 20% higher porosity than reference electrode

Porosity - Effect of TBLS+® on the Cured PAM

average
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→ Formed electrodes with TBLS+® had min. 14% up to 30% higher porosity than reference electrode

Porosity - Effect of TBLS+® on the Formed PAM
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Seeding Model – to understand the Effect of TBLS+®

• Simple model to allow to estimate the optimal TBLS+® dosing in PAM

• Example provided is based on a Acid-to-oxide ratio of 7 litres sulphuric acid per 100 kg of dry lead oxide

Assumptions:

• homogeneous distribution of the seed tetrabasic crystals (d50 0.5 to 0.7 µm) 

• homogeneous growth of the seeds during crystallization phase of curing

• The crystal growth aspect ratio locked in x:y:z direction: 1.00: 0.70: 5.00
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Average 4BS Crystal Size based on simple Model
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Comparison based on the Model, SEM, and the Laser Diffractometry (µm)

20

• SEM data is more off

• Laser diffraction gives a reasonable fit 

with the model

→Over-dosing (>2.5% TBLS+) results in 

crystals growing together (in-effective 

use)

Comparison of Average 4BS Crystal Size

(TBLS+® d50 = 0.5 µm)



Structural Impact of TBLS+®
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• Without TBLS+® and in a 3BS structure the pore diameter is below 1 µm

• TBLS+® shows a significant effect on the porosity of electrodes

• With TBLS+® the crystal size can be systematically controlled (=model)

• There is, depending on the paste recipe, an optimal dosing of TBLS+®

• Optimized electrodes with TBLS+® have larger pore diameters:  about 4 times

• Larger pore size results in a higher water porosity of about 20%

• 4BS crystals for high dosing of TBLS+® (>2% ) grow together – that can result in a structure more 

similar to lower dosing!

• Impact of structural properties on electrical performance was studied
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Consists of two parts:

o First run:     C20, C5, C10, and C1

o Second run: C5, C20, C1, and C10 (see next slide)

Cn   ̶ rated capacity  ̶ means measured capacity after n hours of discharge.

Purpose: Check the electrode stability and the accuracy of the capacity value

Impact on Capacity – Peukert Test



• Electrodes with TBLS+® 

showed 10% larger discharge 

capacity

• Electrodes with 1.0% and 1.5% 
TBLS+® have nearly the same 
capacity in the two runs
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Summary - PAM
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• TBLS+® in PAM as additive has a significant effect on the structure of electrodes:

o Increase of the porosity by up to 20%

o 4 times larger pore diameter as compared to the reference

• Electrodes with TBLS+® showed :

o Higher formation efficiency 

o Higher and more stable capacity 

o Higher cycle durability in the 100% DoD Test (fast aging test)



PAM:

• 4BS curing is an effective concept to improve PAM in EFB batteries

• PENOX is offering new advanced oxides combining the advantage of Red Lead and TBLS+® 

=> our new PENOX RL+ 

Perspective for Battery Additives in EFB
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NAM:

• PENOX is offering new EFB expanders to improve the NAM structure

• 4BS curing of NAM is possible using PENOX designed expanders

• 4BS curing is an alternative or supportive concept to improve NAM and safe costs of expensive 

functional carbons
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Innovation by PENOX

A New Innovation for the PAM combining Red Lead and TBLS+®

Kindly visit our Booth 104



R&D Center in Thuringia, Germany

Thank you for your kind interest!
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