

ADVANCED RED LEAD USED in BATTERY FORMATION – IMPACT on COSTS, BATTERY LIFE, and ENVIRONMENTAL FOOTPRINT

Rainer Bußar, Hamid Ramianpour, Micha Kirchgeßner, PENOX GmbH (D)

FENIBAT Conference, Londrina, Brazil

(Version V4 – dated 04.10.2023)

- Basics & Introduction
- Formation study* with different types of PENOX Red Lead

Agenda

- Carbon Dioxide (CO₂) Mitigation, Process Time Reduction
- Findings & Summary
- "Functional Red Lead" = Red Lead Plus (RL+)**

* First part of the formation study was presented on ELBC 2022
** RL+ was first presented to the battery industry at the FENIBAT 2022

PENOX Introduction – Basics of Formation

• Process duration

• Formation charge (Ah based related to PAM)

Formation energy (Wh based related to PAM)

- Formation factor
- Energy costs
- Process costs

10 to 20 h (flooded technology)

>20 to 30 h (AGM technology)

300 to 600 Ah/kg (flooded)

400 to 500 Ah/kg (AGM Technology)

660 to 1300 Wh/kg in **a 2V cell**

4.0 to 7.8 kWh/kg in a **12V battery**

3 to 6 depending on technology

driven by formation efficiency

balanced time vs. efficiency

The Formation process can be optimized by tuning the key-factors relevant for an effective transformation of the electrical energy into chemical energy in both electrode polarities.

A basic conflict is typically the demand for a fast process and a high energy efficiency

PENOX Introduction – Formation Profile

<u>Typical Formation Steps (Flooded Technology*): "two-shot formation" => PENOX Reference Study</u>

- Soaking of the cell
 - Depending on plate thickness and electrolyte density max. 1 h optimum often with 0.5 h
- Activation Step
 - Low current density to create a basic conductivity
 - Typical duration 0.5 to 1h with a current of 0.1 to 0.3 A per Ah
- Main formation Step with high current
 - High current step with 0.5 to 1 A per Ah time is limited by the charge acceptance of the NAM
 - Step must be ended before the negative plates show a high over-potential
- **Pause** before following steps with reduced current density
 - Typical rest time is 15 minutes to 0.5h depending on plate thickness to allow electrolyte migration and degassing
- Formation Steps with reduced current
 - Typically several steps with reduced current are following

PENOX Formation Profile (12.5 Ah Plate)

PENOX Comments on AGM Formation

- <u>General Comments on AGM:</u>
 - AGM formation runs much longer current limitations and pauses in formation are important
 - The formation requires to allow for a specific water loss, to reach the target acid density
 - Control of the plate process, to control the electrolyte contained within the active mass is crucial
 - PENOX believes that Red Lead (RL) is mandatory in PAM to achieve optimal performance for AGM technology
- Investigations:
 - PENOX has studied first the effect of RL in a simplified flooded set-up
 - The impact of the structure of the PAM was investigated (still on-going)
 - However, it became clear that the <u>NAM structure</u> is very relevant as well (new study started)
 - Future updates concerning AGM technology will be posted under: <u>https://penoxgroup.com/ AGM news</u>

PENOX Study on Formation Energy

- Systematic testing of PAM mixes with:
 - We used industrial **Red lead (RL)** with d50 4.5 μm and PbO2 (lead dioxide) 25 to 27%
 - Different contents of Red lead (RL) 0%, 10%, 25%, 50%, 75% and 100%
 - Comparison of tri-basic (3BS) and tetra-basic (4BS) cured positive active masses (PAM)
- <u>Conditions of the RL study:</u>
 - Same formation profile was used, only duration was varied to change the formation factor
 - Formation factor was systematically varied, and the resulting lead dioxide (PbO2) content analysed
 - Structural investigation of the cured plates (of the formed plates)
 - Testing of initial C20 / C5 capacity and initial capacity evolution
 - Impact of the negative plate was investigated using reference electrodes

PENOX Reference System & Cell

- <u>Cell Set-up:</u>
 - Grid technology is gravity cast grids
 - One positive plate (1p) with C20: 12 Ah nominal
 - Two negative plates (2n)
 - PAM : NAM ratio in weight equals: 1 : 1.8*
 - Electrolyte: 300 g, density 1.28 +/- 0.05 g/cm³
 - C20, C5 was tested at 20 to 22 °C
- Variation of the reference:
 - M-neg. plate is a *standard negative*
 - J-neg. plate is a *negative plate with advanced carbon*

*This high NAM content is reducing the impact of the NAM, as this study is focussing on PAM. PENOX will compare the identified optimal PAM in a normal battery design, e.g. (5p/4n).

PENOX Reference System & Cell

		H2C	H2O	Formation	PbO2 Content (%)		Average
Industrial Plate based Reference Systems	Cell Set-up	Structure	Poro	Factor	upper	lower	Target: 85 +/- 3
		%	%		%	%	%
Reference 1 (Mill oxide) @25°C	1p2n - M neg.*	2PC 40	2.8	72.4	69.6	71.0	
	363 40	40	3.1	72.0	70.6	71.3	
Reference 1 (Mill oxide) @35°C	1n2n - Mnog	2PS 40	10	2.8	82.3	80.4	81.4
	ipzn - wineg.	505	40	3.1	83.0	81.6	82.3
Reference 1 (Mill exide) @45°C	1p2n - M neg.	3BS	40	2.8	85.4	83.0	84.2
Reference I (Milli Oxide) @45 C				3.1	91.6	84.4	88.0
Reference 2 (Mill oxide) @25°C	1n2n - I nog **	3BS	10	2.8	74.4	69.2	71.8
	Than a linear		40	3.1	72.0	70.0	71.0
Reference 2 (Mill exide) @25°C	Reference 2 (Mill oxide) @35°C1p2n - J neg.3BS	280	40	2.8	81.2	77.5	79.4
		303		3.1	81.3	78.2	79.8
Reference 2 (Mill oxide) @45°C	1p2n – J neg.	3BS	40	2.8	87.1	81.8	84.5
				3.1	87.3	84.7	86.0
References produced in PENOX laboratory							
DENOV Deference 2 (100% Patter DANA) @45°C	1p2n - J neg.	3BS	50	2.8	69.8	71.3	70.6
PENUX REFERENCE 3 (100% Battox PAM) $@45^{\circ}C$				3.7	84.0	84.0	84.0

* M-neg. plate is a *standard negative (SLI);* **J-neg. plate is a *negative plate with advanced carbon (EFB type)*

PENOX Reference System & Cell

- Formation of the **reference cells** required a formation factor of **3.1 up to 3.7**
- Formation of the **reference cells** required about **420 to 500 Ah per kg** of PAM

- Temperature of 25°C is too low for an effective formation
- Temperature of 45°C allows a fast formation

Evolution of the C5 capacities are shown on the next slide – please note that for the industrial reference plates we can not know the individual PAM weight – plate weight was measured.

PENOX C5 Capacities (Reference Plates)

C5 Capacities from Reference Cells – all positive Plates are formed from 3BS cured plates

For the reference plates only the total plate weights known

PENOX Characteristics of Red Lead Plus = RL+

RL+ is an "advanced Red Lead (RL):

- It is free flowing powder similar to normal red lead.
- The particle size distribution (PSD) curve follows the PSD-curve of the standard red lead
- The surface is coated with tetrabasic seeding crystals.

RL+ can be produced by PENOX from different types of Pb_3O_4 . However, PENOX recommends to use standard industrial grades of RL.

RL+ is available as a standard product with a 4BS content of 1.5 w%.

Depending on demand different loadings can be produced and made available, up to 5 w% 4BS.

PENOX

Comparison of 4BS Additives

- Coarse (powder based) seeds result in larger 4BS crystals after curing
- TBLS+[®] contains fine seed crystals with d50 of 0.5 to 0.7 μm, which results in the growth of smaller 4BS crystals
- RL+ is coated with similar fine 4BS seed crystals, which result in an identical 4BS crystal growth

RL+ creating 4BS Structure

0.15% 4BS seeds

Battery Oxide	Red Lead
weight%	weight%
90%	10% RL+

0.38% 4BS seeds

Battery Oxide	Red Lead		
weight%	weight%		
75%	25% RL+		

0.38% 4BS seeds

Battery Oxide	Red Lead		
weight%	weight%		
50%	25% RL+ & 25% RL		

PENOX Impact of RL-Content – 4BS Structure

PAM con	nposition	PAM Structure	H2O Porosity	Formation Factor (FF)	Average PbO2 Target: 85 +/- 3
Battery Oxide weight%	Red Lead weight%	Av. 4BS content	%	(lower is better)	%
100% (Mill oxide)	0%	N/D	N/D	N/D	N/D
100% (Barton oxide)	0% RL+ (*1% TBLS+)	92.6%	49%	3.7	82.3
90%	10%	90.4%	48%	3.1	85.0
85%	15%	93.4%	52%	2.5	85.0
75%	25%	92.6%	59%	2.5	87.9
75%	25%	92.6%	59%	1.5	80.9
65%	35%	80.9%	50%	1.4	81.9
50%	50%	92.1%	49%	1.3	80.2
50%	50%	92.1%	49%	1.5	88.4
25%	75%	84.3%	51%	1.2	85.7
0%	100%	91.6%	46%	1.4	84.1

• * 4BS structure is based on 1% of TBLS+ (0.42% of 4BS seeds in PAM) – Reference formation factor is 3.7

• Formation factor can be reduced to about 2 for 25% of RL+

• Formation factor can be reduced to about 1.5 for 50% RL (25% of RL and 25% of RL+)

PENOX Formation Factor depending on RL content

Optimal Formation Factor (Ah based)

Formation Energy (Wh based)

Total Formation Wh (without interpolation = raw data)

* This data-set requires additional measurements to allow for a better fitting.

PENOX Formation Energy (Wh based - normalized)

Total Formation Energy (Wh) normalized to 85% PbO2 content

* The formation energy was interpolated to reach 85% of lead dioxide in the PAM. This interpolation of the <u>3BS structure</u> will require further refinement based on additional data.

PENOX Negative Plate Potential in Formation

- More RL results in less "stress" for the negative electrode.
- A better balanced formation.

RHE = Reversible hydrogen electrode Reference potential for the negative electrode

PENOX C5 Capacities (with RL+ tested @25°C)

Formation of the **reference cells (only grey lead oxide)** require a formation factor of about **3.7**

Formation of the **reference cells (2V)** require about **420 to 500 Ah per kg** of PAM

- **Red Lead** allows to reduce the formation energy significantly
- The effect of **RL addition is not linear** and there is an economical optimum for the RL content
- **100% RL content** is not allowing for a well developed 4BS structure
- **50% RL content** allows to reduce the formation factor from 3.1 to **1.5 a reduction by about 50%**
- 25% RL content allows to reduce the formation factor from 3.1 to 2 a reduction by about 35%
 - → Depending on the relative impact of the electricity costs and the value of process time reduction, there is a <u>specific optimum for the RL and RL+ content</u>.

Impact of Formation Efficiency on CO2 Emissions

Impact of Red Lead on Carbon Dioxide Footprint in Formation

(CO2 emission data is based on Brasilian energy mix with 120 g CO2 per kWh)

PENOX Impact of RL% on Formation Time

Formation Duration per Formation Factor (PENOX – <u>flooded</u> LA Technology)

Summary

<u>Red Lead Industrial Grade and especially RL+ allows for:</u>

- Formation energy reduced by up to 50% vs. using 100% grey oxide
- Formation time reduced depending on the battery technology **by up to 50%**
- AGM technology has a significant benefit from even small RL content, e.g. 10 w.%
- RL+ content can be as low as 10 w.% to achieve a tetrabasic (4BS) structure
- **RL+** allows for higher mass utilisation higher capacity with same active mass
- RL+ can be mixed with normal red lead (RL), if higher content of RL is beneficial
- Carbon dioxide foot print is reduced by a more efficient formation:
 - The emission reduction is depending on the carbon dioxide foot print of the electricity generation
 - In Brazil with about 120 g CO2 per kWh still a reduction from about 400 g to 200 g for a 12 V 60 Ah battery can be achieved!

PENOX R&D Team & Center in Germany

Thank you for your kind interest!

PENOX Design for Advanced AutomotiveBatteries

PENOX is supporting customer development activities – Manuscript available on "Basic EFB Design" NEW Script on AGM Technology and basic consideration in 08/2023 – for FENIBAT 2023

Appendix - Slides for discussion -

PENOX Impact of AGM Grade RL on Cycle life*

28

PENOX Impact on Formation Efficiency

• Conductivity of the active mass during formation

- Cured active masses have a high internal resistance – **RL is increasing the initial conductivity**

• Current density during a formation step

- High current density are impacting both polarities we need to remember the negative electrode
- Negative electrodes have a lower surface area with respect to the positive electrode
- Electrolyte density within the electrode and mass transport
 - Mass transport is a relevant process during formation
 - Solubility is controlled by local electrolyte density within the active masses
 - Therefore, the structure and porosity of the electrodes are crucial
- Bulk electrolyte density
 - Bulk density controls the mass transport of sulfuric acid (generated) within the double-layer and the electrolyte reservoir

• Temperature of the electrodes

Kinetics are strongly depending on temperature

PENOX Voltage Evolution during Formation

4BS structure (based on RL+ or TBLS+[®]) results in lower cell voltage during formation => higher formation <u>energy efficiency</u> in terms of *Wh per kg of AM*

This effect is higher for higher currents used in a formation step!

Impact of Formation Efficiency on CO2 Emissions

(CO2 emission data is based on Brasilian energy mix with 120 g CO2 per kWh of electricity)

Impact of Formation Efficiency on Carbon Dioxide Emissions

(CO2 emission data is based on EU energy mix with 400 g CO2 per kWh of electricity)